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and is described by the stream function ¢(r, ©) {the sense of the axisymmetry assumption and
some considerations concerning its applicability are given in [3]). The functions ¢(r, 8),
x(r, 8), ¥(r, 8), and w(r, 8) [vorticity curlv = w (r, 8)e,] are determined from the problem
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with given functions h,(8) and h,{8), the constants in (1.10a) and {(1.10b) being chosen so
that the solutions obtained would ensure satisfaction of (1.9b).

2. Using indeterminate Lagrangian multipliers we reduce the formulated variational
problem to a nonlinear system of eight equations in partial derivatives (for the variables
¢, ¥, ¥, w and four Lagrangian multipliers) with the corresponding nonlinear boundary condi-
tions [6]. The problem is very difficult to solve.

As the first step we consider the simplest problems, which arise if the velocity field
around the sphere is replaced by a more appropriate approximation, e.g., the velocity field
of potential flow with the stream function

P = (1/2)(r* — 4/r) sin? 0, (2.1
and the hydrodynamic variables are eliminated from the list of functions sought. The first
of two simplified problems (problem A) is formulated as follows: given the velocity field
(determined from (2.1)), find the optimum distributions x,(6) and ¢,(8) for which the
functional
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and, therefore, in the optimized system only one of the two sought distributions ¢,(8) and
xo(8) remains independent {(e.g., assignment of ¢,{6) to within a constant factor from (2.5)
determines x,{(8) and conversely). We also showed that if a solution of problem A is to exist,
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Let us assume that such a function ¢,(8) does exi , which is obtained from
$0(8) by (2.5), it is determined to within an arbi ultiplier. By an appropriate choice
of the normalizing multiplier, tﬁer fore, condition (1.9b) can be satisfied without invoking
limitations of the type (1.10). We also note that the optimum distribution of x,(8) does not
depend on k.
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H Aq 1 4 H 4
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for large F. 1In Figs. 3 and 4 the dash-and-dot lines represent the n(F) dependences obtained
by solving problem A, using condition (1.10b) with h,(8) = sin (6). These data illustrate
the statement that problem A leads to lower values of n than do the results of optimization
on formulation B.
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6§ = 90°) differ more from each other because of the large changes in vg, E, and B in the
region under consideration and also because the terms in the expression fg = {[E x Bl +
{(v x B) x B]}g have different signs.

es that the use of approximation {2.1) to estimate the integrated
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owable. Since cg for self-propulsion depends rather btrongLy on k,
ould be desirable to obtain the solution of the complete variational problem
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